[90] A. Baklouti and H. Fujiwara: The closedness of the product set of two Pukanszky polarizations of exponential Lie groups. J. Math. Soc. Japan. To appear
[89] A. Baklouti and H. Fujiwara: A solution to Duflo’s polynomial problem for nilpotent Lie groups restricted representations. Progress in Mathematics. Birkhäuser Verlag. To appear
[88] A. Baklouti and H. Fujiwara: The polynomial Conjecture for discrete type monomial representations of exponential groups. Kyoto. J. Math. To appear
[87] A. Baklouti and H. Fujiwara: Discrete type restricted representations of exponential groups and differential operators. Inter. J. Math. Vol. 36, No. 3 (2025).
[86] A. Baklouti and H. Ishi: Open orbits and primitive zero ideals for solvable Lie algebras. Forum Math. 36, No. 3, 571-584(2024).
[85] Ali Baklouti and Junko Inoue. Estimate of the $L^p$ -Fourier transform norm for some Lie groups. Cham: Birkhäuser. Appl. Numer. Harmon. Anal., 139-157(2024).
[84] A. Baklouti, S. Bejar and R. Fendri: A criterion of proper action on some compact extensions of $\R^n$ and applications. Inter. J. Math. Vol. 34, No. 3 (23 pages)(2023).
[83] A. Baklouti, H. Fujiwara and J. Ludwig: A proof of the polynomial conjecture for nilpotent Lie groups monomial representations. Trans. Am. Math. Soc. 376, No. 9, 6015-6032 (2023).
[82] S. Adili, A. Baklouti, and S. Bejar: Criterion of proper actions of abelian affine discontinuous groups for $\R^n$. Inter. J. Math. Vol. 33, No. 7, Article ID 2250048, 26 p.(2022).
[81] A. Baklouti, H. Fujiwara and J. Ludwig: A proof of the polynomial conjecture for restrictions of nilpotent Lie groups representations. Represent. Theory 26, 616-634 (2022).
[80] A. Baklouti, M. Chaabouni and R. Lahiani: Müntz-Szàsz theorem for connected nilpotent Lie groups. J. Ramanujan Math. Soc. 37, No.3, 287–300(2022).
[79] Ali Baklouti and Atsumu Sasaki. Visible actions and criteria for multiplicity-freeness of representations of Heisenberg groups. Journal of Lie Theory. 31, No. 3, 719-750(2021).
[78] Ali Baklouti and Sabria Benayed. Müntz-Szàsz analogues for compact extensions of Heisenberg groups. Proc Math Sci 131, 27(2021).
[77] Ali Baklouti and Mahmoud Filali: Beurling’s Theorem on locally compact abelian groups. De Gruyter Proc. Math, 1-4(2020).
[76] Ali Baklouti and Junko Inoue: The $L^p$-Fourier transform norm on compact extensions of locally compact groups. Journal of Fourier Analysis and Applications. 26, 26(2020).
[75] Azaouzi Salma, Ali Baklouti and Mounir Elloumi. A generalized Beurling’s Theorem for some Lie groups. Mathematical Notes. 107, 42–53(2020).
[74] A. Baklouti, S. Bejar and K. Dhahri: Deforming discontinuous groups for Heisenberg motion groups. Int. J. Math. 30, No. 9, 23 p.(2019).
[73] A. Baklouti, S. Dhieb and D. Manchon: The Poisson characteristic variety of unitary irreducible representations of exponential Lie groups. Springer Proceedings in Mathematics & Statistics 290(2019), 207–217.
[72] Baklouti, Ali; Ghaouar, Sonia; Khlif, Fatma A stability theorem for non-abelian actions on threadlike homogeneous spaces. Springer Proc. Math. Stat, 207(2017), 117–135.
[71] A. Baklouti, H. Fujiwara and J. Ludwig: Monomial representations of discrete type of an exponential solvable Lie group. Springer Proceedings in Mathematics & Statistics 290(2019), 1–55.
[70] A. Baklouti, H. Fujiwara and J. Ludwig: The polynomial conjecture for restrictions of some nilpotent Lie groups representations. J. Lie Theory 29, No. 2, 311-341 (2019).
[69] A. Baklouti, M. Bossofora and I. Kedim: Deformation problems on three-step nilpotent Lie groups. Hiroshima Math. J. 49, No. 2, 195-233 (2019).
[68] A. Baklouti, S. Bejar and Ramzi Fendri. A local rigidity Theorem for finite actions on Lie groups and application to compact extensions of Rn. Kyoto J. Math. 59, No. 3, 607-618 (2019).
[67] L. Abdelmoula, A. Baklouti and Y. Bouaziz: On the generalized moment separability theorem for type 1 solvable Lie groups. Adv. Pure. Appl. Math. 9(4): 247-277(2018).
[66] A. Baklouti and S. Thangavelu: Hardy and Miyachi Theorems for Heisenberg motion groups. Nagoya. Math. Journal, 229 (2018), 1-20.
[65] A. Baklouti, M. Boussoffara and I. Kedim. Stability of Discontinuous Groups Acting on Homogeneous Spaces. Mathematical Notes, (2018), vol. 103, no. 4, pp. 9-22.
[64] A. Baklouti and S. Bejar. Variants of stability of discontinuous groups for Euclidean motion groups. Int. J. Math. 28, No. 6, 26 p. (2017).
[63] A. Baklouti and S. Bejar. On the Calabi-Markus phenomenon and a rigidity theorem for Euclidean motion groups. Kyoto. J. Math. 56, N°2. (2016), 325-346.
[62] A. Baklouti, N, ElAloui and I. Kédim. The Selberg-Weil-Kobayashi rigidity Theorem. The rank one solvable case. Int. J. Math, vol 27. no 10 (2016).1650085, 23 pp.
[61] A. Baklouti: On the $L^p$-Fourier transform norm for certain Lie groups. Analysis, geometry and representations on Lie groups and homogeneous spaces. 13–22, Sem. Math. Sci., 39, Keio Univ., Yokohama, (2016).
[60] A. Baklouti, D. Lahyani: Some uncertainty principles for diamond Lie groups. Adv. Pure Appl. Math. 6 (2015), no. 4, 199–213.
[59] S. Azaouzi, A. Baklouti, S. Ben Ayed: Variants of Müntz-Szàsz analogs for Euclidean spin groups. Math. Notes 98, No. 3, 367-381(2015).
[58] A.M. A. Alghamdi, A. Baklouti: A Beurling theorem for exponential solvable Lie groups. J. Lie Theory 25 (2015), no. 4, 1125-1137.
[57] A. Baklouti, S. Ghaouar, F. Khlif: On discontinuous groups acting on $(\Bbb{H}_{2n+1}^r\times\Bbb{H}_{2n+1}^r)/\Delta$. Adv. Pure Appl. Math. 6 (2015), no. 2, 63–79.
[56] A. Baklouti, S. Ghaouar, F. Khlif: Deforming discontinuous subgroups of reduced Heisenberg groups. Kyoto J. Math. 55 (2015), no. 1, 219-242.
[55] A. Baklouti, J. Ludwig and H. Fujiwara: Intertwining Operators of irreducible representations for Exponential Solvable Lie groups. Forum. Math. 27 (2015), no 4, 2231-2257.
[54] A. Baklouti and J. Inoue: Estimate of the Lp-Fourier transform norm of compact extensions. Forum. Math. 26 (2014), no. 2, 621-636.
[53] S. Azouazi, A. Baklouti and M. Elloumi: A generalizaton of Hardy’s uncertainty principle on compact extensions of Rn. Ann. Mat. Pura Appl. (4) 193 (2014), no. 3, 723–737.
[52] S. Azouazi, A. Baklouti and M. Elloumi: Some uncertainty principles like Miyachi, Cowling-Price and Morgan, on compact extensions of Rn. Indian. J. Pure . App. Maths. Volume 44, Issue 5, pp 587-604 (2013).
[51] A. Baklouti and I. Kédim. Open problems in deformation theory of discontinuous groups acting on homogeneous spaces. Int. J. Open Problems Comput. Math. , Vol. 6, No. 1, 2013, 115-131.
[50] A. Baklouti, J. Ludwig and H. Fujiwara: La formule de Penney-Plancherel des restrictions à multiplicités finies des groupes de Lie nilpotents. Adv. Pure Appl. Math. 4, No. 1, 21-40 (2013).
[49] F. Abdelmoula, A. Baklouti and D. Lahiani: The Lp-Lq-version of Miyachi’s Theorem for nilpotent Lie groups and sharpness problems. Math. Notes. 94, Issue 1-2, 3-19 (2013).
[48] A. Baklouti and I. Kédim. On the local rigidity of discontinuous groups for exponential solvable Lie groups. Adv. Pure. Appl. Maths. 4, No. 1, 3-20 (2013).
[47] A. Baklouti, N. ElAloui and I. Kédim. A rigidity Theorem and a Stability Theorem for two-step nilpotent Lie groups. J. Math. Sci. Univ. Tokyo 19 (2012), 1–27.
[46] L. Abdelmoula, A. Baklouti and I. Kédim: The Selberg-Weil-Kobayashi local rigidity Theorem for exponential Lie groups. Int. Math. Res. Not. No. 17, 4062-4084 (2012).
[45] A. Baklouti: Analogues to some uncertainty principles on certain solvable Lie groups. Adv. Pure Appl. Math. 3, No. 3, 265-279(2012).
[44] A. Baklouti and J. Inoue: Estimate of the Lp-Fourier transform norm for connected nilpotent Lie groups. Adv. Pure Appl. Math. 2, No. 3-4, 467-483 (2011).
[43] A. Baklouti, F. Khlif and H. Koubaa. On the geometry of stable discontinuous subgroups acting on threadlike homogeneous spaces. Math. Notes, Volume 89, Numbers 5-6, 761-776(2011).
[42] A. Baklouti, S. Dhieb and K. Tounsi: When is the deformation space T (?,H2n+1,H) a smooth manifold. Int. J. Math. Vol. 22, No. 11 (2011) 1–21.
[41] A. Baklouti: On discontinuous subgroups acting on solvable homogeneous spaces. Proc. Jap. Academy, 87, Serial A. 87, No. 9, 173-177 (2011).
[40] A. Baklouti, S. Dhieb, D. Manchon: A deformation approach of the Kirillov map for exponential groups. Adv. Pure Appl. Math. 2, No. 3-4, 421-436 (2011).
[39] F. Abdelmoula and A. Baklouti: The Lp-Lq-version of Morgan’s Theorem for exponential solvable Lie groups. Math. Notes. 88, No. 4, 464-478 (2010).
[38] A. Baklouti and S. Thangavelu : Variants of Miyachi’s Theorem on Nilpotent Lie groups. J. Aust. Math. Soc. 88, No. 1, 1-17 (2010).
[37] A. Baklouti and I. Kédim : On non-abelian subgroups acting on exponential solvable homogeneous spaces. Int. Math. Res. Not. 2010, No. 7, 1315-1345 (2010).
[36] A. Baklouti and F. Khlif: Deforming discontinuous subgroups for threadlike homogeneous spaces. Geometria Dedicata. Vol 146, 117-140 (2010).
[35] A. Baklouti and E. Kaniuth : On Hardy’s uncertainty principle for solvable locally compact groups. J. Fourier Anal. Appl. 16, No. 1, 129-147 (2010).
[34] A. Baklouti: Deformation of discontinuous subgroups acting on some nilpotent homogeneous spaces. Proc. Japan Acad., 85, Ser. A. No. 4. (2009) 41-45.
[33] A. Baklouti, J. Ludwig and H. Fujiwara: A variant of Frobenius reciprocity for restricted representations on nilpotent Lie groups. Infinite dimensional harmonic analysis IV. Hackensack, NJ: World Scientific. 13-31 (2009).
[32] A. Baklouti and I. Kédim: On the deformation space of Clifford-Klein forms of some exponential solvable homogeneous spaces. Int. J. Math. Vol 20, Issue 7, 2009(817-839).
[31] A. Baklouti, I. Kédim and T. Yoshino : On the deformation space of Clifford-Klein forms of Heisenberg groups. Int. Math. Res. Not. IMRN (2008), no. 16, 35 pp.
[30] A. Baklouti and E. Kaniuth: On Hardy’s uncertainty principle for connected nilpotent Lie groups. Math. Z. Volume 259, No. 2, 2008 (233-247).
[29] A. Baklouti and N. Ben Salah: On Theorem of Beurling and Cowling-Price for certain nilpotent Lie groups. Bull. Sci. Math. Volume 132, No. 6, 2008 (529-550).
[28] A. Baklouti and K. Tounsi: On the Benson-Ratcliff invariant of coadjoint orbits on nilpotent Lie groups. Osaka. J. Math. Volume 44, 2007 (399-414).
[27] A. Baklouti and H. Hamrouni: The multiplicity function of mixed representations on Completely solvable Lie groups. Tokyo. J. Math. Volume 30, N 1, 2007 (41-55).
[26] A. Baklouti and F. Khlif: Weak proper actions on solvable homogeneous spaces. Int. J. Math. Volume 18, N 8, 2007 (903-918).
[25] A. Baklouti, J. Ludwig, L. Scuto and K. Smaoui: Estimate of the Lp-Fourier Transform Norm on Strong *-Regular Exponential Solvable Lie Groups. Acta. Math. Sinica. Volume 23, N 8, 2007 (1173-1188).
[24] A. Baklouti, H. Hamrouni and F. Khlif: Analysis of some monomial representations of exponential solvable Lie groups. Russ. J. Math. Physics. Volume 13, N 4, 2006 (363-379).
[23] A. Baklouti and N. Ben Salah: The Lp-Lq Version of Hardy’s Theorem on nilpotent Lie groups. Forum Mathematicum. Volume 18, 2006 (245-262).
[22] A. Baklouti and F. Khlif: Proper actions on some exponential solvable homogeneous spaces. Int. J. Math. Volume 16, N 9, 2005 (941-955).
[21] A. Baklouti, S. Dhieb et D. Manchon: Déquatification des orbites coadjointes et variétés caractéristiques. J. Geo. Physics. Volume 54, N 1, 2005(1-41).
[20] A. Baklouti, H. Fujiwara and J. Ludwig: Analysis of Restrictions of Unitary Representations of a Nilpotent Lie Group. Bull. Sci. Math. Volume 129, Issue 3, 2005(187-209).
[19] A. Baklouti: Dequantization of co-adjoint orbits : Moment Sets and characteristic varieties. Contemporary Mathematics. Volume 377, 79-91(2005).
[18] A. Baklouti, N. Ben Salah and K. Smaoui: Some uncertainty principles for nilpotent Lie groups. Contemporary Mathematics. Volume 363, 2004(39-52).
[17] A. Baklouti and H. Fujiwara: Commutativité de l’algèbre des Opérateurs différentiels sur l’espace des représentations restreintes des groupes de Lie nilpotents. J. Math. Pures. Appl. Volume 83, 2004(137-161).
[16] A. Baklouti et H. Fujiwara: Opérateurs Différentiels Associés à Certaines Représentations Unitaires des Groupes de Lie Résolubles Exponentiels. Compositio. Math. Volume 139, 2003(29-65).
[15] A. Baklouti, J. Ludwig and K. Smaoui: Estimate of the Lp -Fourier transform norm of Nilpotent Lie Groups. J. Funct. Anal. 199, 2003(508-520).
[14] A. Baklouti, A. Ghorbel et H. Hamrouni: Sur Les Représentations Mixtes Des Groupes de Lie Résolubles Exponentiels. Publ. Mat. Volume 46, 2002(179-199).
[13] A. Baklouti and H. Hamrouni: On the Down-Up Representations of Exponential Solvable Lie Groups. Russ. J. Math. Physics. Volume 8, N 4, 2001(422-432).
[12] A. Baklouti and H. Fujiwara: Harmonic Analysis on some Exponential Homogeneous Spaces. Research and Exposition in Math, Volume 25, N 1, 2001(127-134).
[11] A. Baklouti and J. Ludwig: Invariant Differential Operators On Certain Nilpotent Homogeneous Spaces. Monatshefte für Mathematik, Volume 134, N 1, 2001(19-37).
[10] A. Baklouti, C. Benson and G. Ratcliff: Moment Separation of the unitary dual of nilpotent Lie Groups. Journal of Lie Theory. Volume 11. N1, 2001(153-154).
[9] A. Baklouti et J. Ludwig: Entrelacement des restrictions des représentations unitaires des groupes de Lie nilpotents. Annales de L’institut Fourier. Grenoble, Volume 51, N 2, 2001(1-35).
[8] D. Arnal, A. Baklouti, J. Ludwig and M. Selmi: Separation of Unitary representations of exponential solvable Lie groups. Journal of Lie Theory. Volume 10. N 2. 2000(399-410).
[7] A. Baklouti and J. Ludwig: The Penney-Fujiwara Plancherel Formula for nilpotent Lie groups. J. Math. Kyoto Univ. Volume 40, N 1. 2000.
[6] A. Baklouti: Harmonic Analysis On Invariant Differential Operators On Nilpotent Homogenous Spaces. Russ. J. Math. Physics. Volume 6, N 2.1999(125-136).
[5] A. Baklouti et J. Ludwig: Désintégration des représentations monomiales des groupes de Lie nilpotents. Journal of Lie Theory. Volume 9. N 1. 1999(157-191).
[4] A. Baklouti: Nouvelle désintégration lisse de L2(G) pour les groupes résolubles exponentiels. Journal of Lie Theory. Volume 8.1998(1-26).
[3] A. Baklouti, J. Ludwig et M. Selmi: Séparation des représentations unitaires et irréductibles des groupes de Lie nilpotents. Lie Theory and its applications in Physics. Volume 2. 1997 (75-91).
[2] A. Baklouti: On the Cortex of connected Simply connected Nilpotent Lie Groups. Russ. J. Math. Physics. Volume 5, Number 3. 1997(281-294).
[1] A. Baklouti : Le Cortex en dimension six. Publication du centre universitaire de Luxembourg. Fascicule V, 1993(7-45).